CHEMICAL KINETICS

Reminder The following methods can be used to increase the rate of a reaction.

- increase surface area
- use a light source (certain reactions only)

increase pressure (gaseous reactions only)

- increase temperature
- add a catalyst
- increase concentration

How they affect the rate has been studied in earlier work with special reference to Collision Theory.

CONCENTRATION

Introduction Increasing concentration = more frequent collisions = increased rate

However: Increasing the concentration of some reactants can have a greater effect than increasing others.

Rate Reactions start off at their fastest then slow as the reactant concentration drops.

- eg In the reaction A + 2B —> C the concentrations might change as shown
 - the steeper the curve the faster the rate of the reaction
 - reactions start off quickly because of the greater likelihood of collisions
 - reactions slow down with time because there are fewer reactants to collide

Reactants (A and B)

Concentration decreases with time

Products (C)

Concentration increases with time

[] refers to the concentration in mol dm⁻³

- the rate of change of concentration is found from the slope or gradient
- the slope at the start will give give the INITIAL RATE
- the slope gets less (showing the rate is slowing down) as the reaction proceeds

Investigation • the variation in concentration of a reactant or product is followed with time

- method depends on the reaction type and the properties of reactants/products
- e.g. Extracting a sample from the reaction mixture and analysing it by titration
 - Using a colorimeter or UV / visible spectrophotometer
 - Measuring the volume of gas evolved or a change in conductivity

THE RATE EQUATION

Format • links the rate of reaction to the concentration of reactants

• can only be found by doing actual experiments, not by looking at the equation

the equation... A + 2B + X ----> C + D $r = k [A] [B]^{2}$ **might** have a rate equation like this usually mol dm⁻³ s⁻¹ where r rate of reaction units conc. / time k rate constant units depend on the rate equation units mol dm⁻³ [] concentration

Interpretation The above rate equation tells you that the rate of reaction is...

proportional to the conc of reactant A
proportional to the square of the conc of B
not proportional to the conc of X
doubling [A] - will double rate doubling [B] - will quadruple rate altering [X] - no effect on rate

Order of reaction

Individual order Overall order	The power to which a concentration is raised in the rate equation The sum of all the individual orders in the rate equation.			•
	e.g.	in the rate equation	r = k [A] [B] ²	
	and	 the order with respect to the order with respect to the overall order is 3 	B is 2	1st Order 2nd Order 3rd Order
	rders nee	ed not be whole numbers		

Remember The rate equation is derived from experimental evidence not by from an equation.

- species in the stoichiometric equation sometimes aren't in the rate equation
- substances not in the stoichiometric equation can appear in the rate equation

2

Experimental determination of order

Method 1 **1.** Plot a concentration/time graph Calculate the rate (gradient) at points on the curve.

When the concentration is 2.0 mol dm⁻³ the gradient = - 3.2 mol dm⁻³ 44 minutes

The gradient is negative because the concentration is decreasing

rate = -7.3 x 10⁻² mol dm⁻³ min⁻¹

Notice how the gradient gets less as the reaction proceeds. This shows that the rate of reaction is getting less.

CONCENTRATION v. TIME GRAPHS

WHAT TO LOOK FOR

- A ZERO ORDER a straight line with constant slope
- **B** FIRST ORDER downwardly sloping curve with a constant half life
- C SECOND ORDER steeper downwardly sloping curve; levels out quicker

Method 12. Plot another graph of rate (y axis) versus the concentration (x axis)(cont)

A ZERO ORDER

a straight line horizontal to the x axis rate is independent of concentration

B FIRST ORDER

a straight line with a constant slope rate is proportional to concentration

GRADIENT = RATE CONSTANT (k)

C SECOND ORDER

an upwardly sloping curve; plotting rate v. $conc^2$ gives a straight line

Method 2 The initial rates method.

Do a series of experiments (at the same temperature) at different concentrations of a reactant but keeping all others constant.

- Plot a series of concentration / time graphs
- Calculate the initial rate (slope of curve at start) for each reaction.
- Plot each initial rate (y axis) against the concentration used (x axis)
- From the graph, calculate the relationship between concentration and rate
- Hence deduce the rate equation see the graph at the top of the page
- To find order directly, logarithmic plots are required.

4

Kinetics

Half-lifeA characteristics of a FIRST ORDER REACTION is that it has a constant half life $(t_{\frac{1}{2}})$ which is independent of the concentration. It is very similar to radioactive decay.

Definition The time taken for the concentration of a reactant to drop to half of its original value.

TO CALCULATE THE RATE CONSTANT (k) FOR A FIRST ORDER REACTION

k =	0.693
	t _{1/2}

- **Q.3** In the reaction, $A + B \longrightarrow X + Y$, the concentration of A was found to vary as shown in the table. It was later found that the order with respect to (wrt) B was 0.
 - plot a graph of [A] v. time
 - calculate the time it takes for [A] to go from...
 1.30 to 0.65
 1.00 to 0.50
 0.50 to 0.25 (all in units mol dm⁻³)
 - deduce from the graph that the order wrt A is 1
 - calculate the value of the rate constant, k

Time / s	$[A] / mol dm^{-3}$
0	1.30
20	1.05
40	0.85
60	0.68
80	0.55
100	0.45
120	0.36
140	0.29
160	0.24
180	0.19
200	0.15

Knockhardy Publishing

5

-					
Rate cons	Rate constant (k)				
Value	 the value of the rate constant is affected by temperature increasing the temperature increases the value of the rate constant if k increases, so does the rate an increase of 10°C approximately doubles the rate of a reaction 				
Units	The units o	f k depend on the over	rall order of reac	tion.	
e.g	g. if the rate	equation is rate = k	[A] ² the units of	of k will be d	m ³ mol ⁻¹ sec ⁻¹
Calculation	Divide rate	(conc per time) by as	many concentrat	ions that are	in the rate equation
	Overall Ord	der 0	1	2	3
	units of k	mol dm ⁻³ sec ⁻¹	sec ⁻¹ dm ³	mol ⁻¹ sec ⁻¹	dm ⁶ mol ⁻² sec ⁻¹
	example	in the rate equation in the rate equation			
(Q.4 Derive r = k[C] r = k [Z] r = k [A]	Z] ²	e constant k in the	following rate	equations.

Q.5	Using the data, construct t oxide and oxygen. What is	1 0	
Expt	Initial [NO] / mol dm ⁻³	Initial [O ₂] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	1	2	7
2	2	1	28
3	2	2	56
4	3	3	?
Hint		3 to find the order with re 3 to find the order with re	-

5

Kinetics

The Arrhenius equation

Rate Equation

- a typical rate equation may like this $r = k [A] [B]^{2}$
 - it shows how rate is affected by the concentrations of reactants [A] and [B]
 - the rate constant (k) shows how other variables affect the rate
 - a change of temperature or the addition of catalyst affects the value of k
 - it is expressed mathematically using the Arrhenius equation

Arrhenius	
equation	

represents the fraction of the molecules in a gas which have energies equal to or greater than the activation energy at a stated temperature

includes factors like the frequency of collisions and their orientation. It varies slightly with temperature, although not much and is taken as constant across small temperature ranges.

k	rate constant	units depend on overall order
Т	temperature	K (K = °C + 273)
R	gas constant	8.13 J K ⁻¹ mol ⁻¹
$\mathbf{E}_{\mathbf{a}}$	activation energy	J mol ⁻¹
e	constant	2.71828
Α	pre-exponential factor (frequency factor)	no units

Calculations • values of A and E_a are obtained from the Arrhenius equation by the relationship

rate

$$k = -\frac{E_a}{RT} + lnA$$

Graphical

method • convert and re-arrange the equation into the straight line formula y = mx + c

Rate determining step

- · each of these stages has its own rate and hence its own rate constant
- the overall rate of a multi-step process is governed by the slowest step - rather like a production line where the output can be held up by a slow worker
- the slowest step is known as the rate determining step
- investigation of the rate equation gives an idea of whether, or not, a reaction takes place in a series of steps

Example	lodine reacts with propanone CH_3	$COCH_3 + I_2 \longrightarrow CH_3COCH_2I + HI$
	The rate equation for the reaction is	rate = k [CH₃COCH₃] [H ⁺]
	 Why is [H⁺] in the rate equation? 	the reaction is catalysed by acid
	• Why is [I ₂] not in the rate equation?	the reaction has more than one step and the slowest step doesn't involve iodine

The rate determining step must therefore involve propanone and acid.

Example 2	The reaction	$H_2O_2 + 2H_3O^+ + 2I^- \longrightarrow I_2 + 4H_2O$	takes place in 3 steps
	Step 1	$H_2O_2 + I^- \longrightarrow IO^- + H_2O$	slow
	Step 2	IO^- + H_3O^+ —> HIO + H_2O	fast
	Step 3	$HIO + H_3O^+ + I^- \longrightarrow I_2 + 2H_2O$	fast

The rate determining step is STEP 1 as it is the slowest

Example 3	The reaction	$2N_2O_5 \longrightarrow 4NO_2 + O_2$ takes place in	3 steps
	Step 1	$N_2O_5 \longrightarrow NO_2 + NO_3$ (occurs twice)	slow
	Step 2	$NO_2 + NO_3 \longrightarrow NO + NO_2 + O_2$	fast
	Step 3	NO + NO₃ —> 2NO₂ from another Step 1	fast

The rate determining step is STEP 1 as it is the slowest The rate equation for the reaction is $rate = k [N_2O_5]$

The hydrolysis of halogenoalkanes

Introduction	by aqueous hydroxide ions R		RX	+ OH⁻(aq) —> ROH + X⁻
	There are	two possible mechanisms		
	Mech. 1	 one step reaction requires both species to colli rate is affected by both react second order overall 		rate = k[RX][OH ⁻]
	Mech 2	 two step reaction 		RX> R ⁺ + X [−] R ⁺ + OH [−] > ROH
		 step (i) is slower as it involves bonds breaking and will thus be the rate determining step 		
		rate depends only on [RX]first order overall		rate = k[RX]

Mechanism 2 is very common with tertiary (3°) haloalkanes whereas primary (1°) and secondary (2°) haloalkanes usually undergo hydrolysis via a second order process.

Molecularity The number of individual particles of the reacting species taking part in the rate determining step of a reaction.

- e.g. A + 2B -> C + D molecularity is 3 one A and two B's need to collide
 - A -> 2B however has a molecularity of 1 only one A is involved